Porous medium equations on manifolds with critical negative curvature: unbounded initial data
نویسندگان
چکیده
منابع مشابه
Continuity estimates for porous medium type equations with measure data
We consider parabolic equations of porous medium type of the form ut − divA(x, t, u,Du) = μ in ET , in some space time cylinderET . The most prominent example covered by our assumptions is the classical porous medium equation ut −∆u = μ in ET . We establish a sufficient condition for the continuity of u in terms of a natural Riesz potential of the right-hand side measure μ. As an application we...
متن کاملInstability of Elliptic Equations on Compact Riemannian Manifolds with Non-negative Ricci Curvature
We prove the nonexistence of nonconstant local minimizers for a class of functionals, which typically appear in scalar two-phase field models, over smooth N -dimensional Riemannian manifolds without boundary and nonnegative Ricci curvature. Conversely, for a class of surfaces possessing a simple closed geodesic along which the Gauss curvature is negative, we prove the existence of nonconstant l...
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملDirac Operators on Hypersurfaces of Manifolds with Negative Scalar Curvature
We give a sharp extrinsic lower bound for the first eigenvalues of the intrinsic Dirac operator of certain hypersurfaces bounding a compact domain in a spin manifold of negative scalar curvature. Limiting-cases are characterized by the existence, on the domain, of imaginary Killing spinors. Some geometrical applications, as an Alexandrov type theorem, are given. Mathematics Subject Classificati...
متن کاملMetrics with Non-negative Ricci Curvature on Convex Three-manifolds
We prove that the space of smooth Riemannian metrics on the three-ball with non-negative Ricci curvature and strictly convex boundary is path-connected; and, moreover, that the associated moduli space (i.e., modulo orientation-preserving diffeomorphisms of the threeball) is contractible. As an application, using results of Maximo, Nunes, and Smith [MNS], we show the existence of properly embedd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicable Analysis
سال: 2018
ISSN: 0003-6811,1563-504X
DOI: 10.1080/00036811.2018.1441996